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Introduction

e Large language models (LLMs) excel in various tasks but rely heavily
on human-generated data.

« Human data is costly and scarce, especially for complex problem-
solving tasks (e.g., math, coding).

* This paper proposes ReST-EM, a self-training method using
expectation-maximization (EM) and reinforcement learning (RL) to
reduce dependence on human data.

« Significance: Improves LLMs with minimal human input, leveraging
scalar feedback.



Related and Past Work

Expert Iteration (ExiT):
Uses search/MCTS for expert sample generation, then distills into the base model. ReSTEM replaces search

with temperature sampling.

Self-Taught Reasoner (STaR):
Employs greedy decoding and rationalization, though rationalization may lead to false positives.

Rejection Sampling Fine-Tuning (RFT):
Runs a single generate-and-improve cycle; shows limited gains on GSM8K versus ReSTEM's iterative gains
on harder benchmarks.

Ilterative Maximum Likelihood (IML):
Optimizes via reward-weighted log-likelihood on mini-batches, risking overfitting and high computation cost.

RWR & RAFT:
Apply EM with reward scaling or ranking. RAFT is similar to IML for binary rewards and aligns with ReSTEM.



Comparison

ReSTEM ReST STaR RFT

Starts from fine-tuned model X v X X
Finetunes from base model in each iteration v X v/ N/A
Uses rationalizations for unsolved questions X X v X
Temperature sampling for exploration v v X v
Experiments with Large LMs v X X v
Multiple iterations v v v X
Larger gains on bigger models v N/A N/A X
Evaluation on held out tasks v X X X




Problem Formulation

 Assume access to an autoregressive language model which can produce a
sequence of output tokens 'y = (y;, ¥,, , , y7) given context or source input

X = (x19x29 ’ 9XL)'

« Assuming that the model is parametrised by 6, the conditional probability of
generating a sequence y given X Is:

Py | X) = II_ pe(y, | v, X)

» Assume access to deterministic sequence level (or terminal) reward (X, y)

. Goal: Maximize SfRL(é’) = Iy 9 [_pre(y‘X)[r(Xa y)]



But....

Optimizing Z5;(0) = kg [-x,\,pe(y‘x)[r(x, y)|| is computationally
expensive.

* Policy Gradient based RL methods require updating and sampling from the
policy numerous times during training.



Idea: Expectation Maximization

o Expectation Maximization (Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977) , Dayan &
Hinton 1997)

» Define binary optimality variable O, such that p(O = 1|X,y) « f(r(X,y))

« We want to maximize the log likelihood of observing O = 1 (obtaining high reward)

log(p(0 = 1]x)) :=log ) py(y [X)p(0 = 1|x,y)
Y

 However, the sum over all possible output sequences y is typically intractable.

e S0, instead of maximising log likelihood directly, we maximize its Evidence Lower
Bound.


https://en.wikipedia.org/wiki/Arthur_P._Dempster
https://en.wikipedia.org/wiki/Nan_Laird
https://en.wikipedia.org/wiki/Donald_Rubin

ELBO

 The Evidence Lower Bound for the log likelihood term is given by:

. Ly q) = E yollogp(0=1]xy)| - KL(q(y | %) || pe(y | x))

* The expectation maximization algorithm maximizes this objective by alternating between E-
step and M-step.

e E-step:

. gt = argmax,L(pg:, q)
* M-step:

. 0" = argmax,L(p,, g")



ReSTEM

Generate (E-step):
* |nput: Current model p0, dataset D of input contexts (e.g., math problems).
* Process:
1. For each input xj in D, sample N outputs yj from p0O(yIXx))
2. Score each pair (x],y)) with a binary reward r(xj,y)):
e 1 if correct, O If Incorrect.

3. Collect correct pairs into a new dataset Di={(x],y))Ir(x],y))=1}.

e Output: A dataset Di of high-quality (correct) samples.



ReSTEM

 Improve (M-step):
* Input: Base pre-trained model 0 base, dataset D

e Process:

e Fine-tune 6. on D to maximize:

o J(O) = E( g, [ og py(y | X))

e Since r(x,y)=1 for all pairs in D, fine-tuning on correct outputs

 Output: A new model 0, used for the next Generate step



Experiment

Tasks:
 Math: Hendrycks MATH, GSM8K
 Coding: APPS (Intro) & HumanEval
Models: PaLM-2 Series (S, S*, L)
Main Comparison:
 SFT on human data vs. ReSTEM on model-generated data
Evaluation:
 Pass@1 (direct generation)

* Pass@k / majority voting for diversity



Results
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Results
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Key Observations

Significant Boost Over Human Fine-Tuning:
« On MATH, ReSTEM surpasses supervised fine-tuning (SFT) with human-written solutions.
e Gains are bigger for larger models (e.g., PaLM 2-L).
Multiple Iterations:
« MATH: More iterations — steady improvement until overfitting starts.
 APPS: 1st iteration yields the largest boost; further iterations can hurt (fewer training problems).
Improved Diversity:
* Higher Pass@K (chance that at least 1 of K samples is correct).
* Better majority-voting accuracy.
Difficulty Analysis:
* MATH subset shows the biggest gains on medium-to-hard problems.

* Exploiting multiple model-generated solutions yields richer training data



Limitations

Dependence on Clear Correctness Signals

e ReSTEM needs a well-defined reward check.

e Jasks without an automatic way to decide correctness are hard to handle.
Overfitting on Small Data

e |teratively fine-tuning on a limited set of problems can reduce generalization,
as seen in APPS.

Possible “Reward Hacking”

e |f the correctness check is incomplete or simplistic the model might learn
shortcuts or produce false positive



Conclusion

Model-Generated Data Can Outperform Human Data

e Especially in math and coding tasks, correctness checks enable scalable, high-quality self-
training.

ReSTEM Scales

e  Strong gains observed on larger models; iterative refinement outperforms single-step
approaches.

Overfitting is a Concern

e The number of iterations and dataset size both matter. Repeated re-training can degrade
performance.

Broad Potential

e No major regressions on general benchmarks; could be generalized to a wide range of tasks
with reliable performance



